
Object-Oriented Programming Testing Methodology

Chi-Ming Chung and Ming-Chi Lee

Department of Computer Science
Tamkang University

Taipei, Taiwan, R.O.C.

Abstract
Inher i tance i s an impor tant a t t r ibute in object-

or iented programming (OOP). This not ion supports
the class h ierurchy design and captures the is -a rela-
t ionship between a class and i ts subclass. I t contributes
to good properties of modularity, reusabil i ty and incre-
m e n t a l design [I l l 1191. However , misuse of mul t ip le
(repeated) inher i tance w i l l l e a d to improper class hi-
erarchy which suffers from name-confliction and im-
p l ic i t errors. Th is type of errors i s very difficult t o be
detected by convent ional testing methodologies. This
paper describes a graph-theoretical testing methodol-
ogy for detecting this type of errors. An algor i thm to
support th is testing methodology i s also presented.

1 Introduction
Object-oriented design strategy is a new promising
approach for developing software to reduce software
cost and enhance software reusability. One of ad-
vantages of object-oriented programming over conven-
tional procedure-oriented programming is supporting
the notion of a class h ierarchy and inher i tance of p rop
erties (instance variables and methods) along the class
hierarchy. A class hierarchy captures the is -a relation-
ship between a class and its subclass, and a class in-
herits all properties defined for its superclasses. The
notion of property inheritance and class hierarchy con-
tributes to good ro erties of reusability and incre-
mental design [2] fllf[19]. It has been the major ten-
dency of software development in 1990’s but it is still
lack of testing methodologies based on the OOPLs to
help to test software errors.

In the software life cylce, software testing is an
important techniques to reduce the software errors
and enhance correctness. Most conventional test-
ing methodologies are derived from program factors
such as control flow and data dependency. However,
the program factors of OOPLs are not merely lim-
ited on these factors. Generally speaking, an object-
oriented programming language must exhibit four pro-
gram factors (features): inheritance, data abstraction,
dynamic bindrng, and informat ion h id ing 1231. Most of
these features do not exist in conventional procedure-
oriented programming language. Especially inheri-
tance does not exist in any procedure-oriented pro-

gramming languages. It is conceivable that the de-
velopment of testing techniques should consider the
features of OOPLs. Inheritance is one of the most
important features which will affect software reuse,
and it supports the class h ierarchy design and c a p
tures the IS-A relationship between a class and its sub-
class. This property has been widely applied in object-
oriented software, object-oriented database, and graph
system design. However, misuse of it would be prone
to increase software errors and complexity [25 . Mul-

class to inherit more than one parent class. Although
potential for code sharing is increased, the possibil-
ity of conflictions between parent classes not only in-
crease the complexity of such systems but also leads
to implicit software errors. This type of implicit er-
rors called name-confl ict ion [19] is difficult to be de-
tected by procedure-oriented testing methodologies,
but could be reflected by the graph-theoretical test-
ing methodology presented in this paper. We pro-

ose two graph theorems which show that repeated P multiple) inheritance must consist of a set of of unit
repeated inher i tance (URIs) which not only help to
test implicit errors, but also reflects the inheritance
mechanism complexity. In Section 2, conventional
procedure-oriented software testing and the relation
between the object-oriented testing and OOPL’s fea-
tures are introduced. In section 3, the graph repre-
sentation is applied to help to describe the inheritance
mechanism. Two graph theorems and several proper-
ties are presented and proved; the testing technique
based on these theorems is proposed. In Section 4, an
algorithm to support this technique is presented, and
illustrates how this testing technique could be applied
to detect the object-oriented software errors. The final
section discusses the future research.

tiple inheritance and repeated inheritance a l m s 1 a

2 Conventional testing v.s
Object-orient ed testing

Conventional software testing methods are divided
into two categories: static testing and dynamic test-
ing (see figure I). In static testing the program is an-
alyzed without executing it, while in dynamic testing
the program is executed. Most testing methodologies
fall into the category of dynamic testing, due to the

0-8186-2830-8/92 $03.00 Q 1992 IEEE
378

fact that more information can be derived during pro-
grams execution. Functional testing and structural
testing are two major approaches in dynamic testing.
They are also called black-boz testing and white-boz
testing. In functional testing, tests are constructed
based upon the program’s functional properties, ig-
noring its internal structure. In structural testing, the
internal control flow strucuture or data dependencies
are used to develop the testing methodology to con-
duct the testing. McCabe’s structured testing [17],
Chung’s path complexity technique [B] and Chung’s
testing path methodology (91 are examples of the con-
trol structure testing, and Ntafos’s required k-tuples
criteria [21] and Ra ps’s testing criteria (all-defs, all-
p-uses, all-uses, e tc5 [24] , are examples of the data
dependencies testing.

Structural Testing I 1 (White-Box Testing)

Fig.1 Procedure-oriented testing classification

A. Control Flaw Based Testing

McCabe’s Structured Tes t ing
McCabe [17) proposed a structured testing method-

ology based on the control flow graph and the idea of
cyclomatic complexity [161. To accomplish a struc-
tured testing of a program P, the following criteria
need to be met.

1. Every branch of each decision in P must be ex-
ercised at least once.

2. The least number of distinct paths needs be exer-
cised is v. Where the value of v is the cyclomatic
complexity p.

Chung’s PCT C o m p l e x i t y a n d Tes t ing
Chung’s PCT is based on path complezity which is

utilized to establish a testing order for path selection
[3]. The idea is a path with higher path complexity is
more error prone. Two testing criteria are proposed
by Chung. They are: intra level first criterion and
inter level first criterion [4] [5].
B. Data Flow Based Testing
Laski and K o r e l T e s t i n g

The data flow based testing strategy proposed by
Laski and Korel [15] is based on two essential nota-
tions: data environment and data contezt. There are
two testing strategies:

the liveness of each definition from the data en-
vironment of every statement must be tested at
least once.

each elementary data context of every statement
must be tested at least once.

R a p p s a n d W e y u k e r ’s Tes t ing Methodologies

Rapps and Weyuker proposed a family of testing
criteria 1241 based on the relationships between the
definition of variables and how they are used in a
program. Each occurence of a variable in a program
is classified into three types: definition, computation
use, or predicate use, denoted by def, c-use, and p-use,
respectively. A def i s the same as a variable definition;
a c-use is defined as a variable defintion which is ref-
erenced to define a variable and a p-use is a variable
which is referenced in a predicate in a program. These
testing criteria form a hierarchy, including all-nodes
criterion, all edges criterion, all-r-uses criterion, all-
uses criterion and all-paths criterion.

0 bj ec t- orient ed Testing Methodology
Until now, there is no testing methodology devel-

oped based on the OOPLs. In the following, we de-
velop a testing methodology based on the properties
of OOPLs. Object-oriented programming languages
(OOPLs) consists of four features: information hid-
ing, data abstraction, dynamic binding and inheri-
tance. Information hiding is important for ensuring re-
liability and modifiability of software system by reduc-
ing interdependencies between software components.
The state of a software module is contained in a pri-
vate variab!e, visible only from within the scope of
the module. Only a localized set of procedures di-
rectly manipulates the data. In addition, since the
internal state variables of a module are not directly
accessed from without, a carefully designed module
interface may permit the internal data structures and
procedures to be changed without affecting the imple-
mentation of other software modules. Data abstrac-
tion could be considered a way of using information
hiding. A programmer defines an abstract data type
consisting of an internal representation plus a set of
procedures used to access and manipulate the data.
Dynamic binding allows a programmer to pursue a
course of action by sending a message to an object
without concern about how the software system is to
implement the action. This capability becomes sig-
nificant when the same general type of action can be
accomplished in different types of objects. It increases
flexibility by permitting the additon of new classes of
objects (data types) without having to modify existing
code. Inheritance is the center of object-oriented pro-
gramming and will be discussed in the next section.
The relationship between the object-oriented testing
and OOPL’s features is shown in figure 2.

379

Abstract Data Type control +
consist of ---+

Figure 2. Object-oriented Testing and OOPLs
features

3 Inheritance and Graph The-
orems

Inheritance is the major mechanism of OOPLs for soft-
ware reuse which is different from the module reuse,
such as subroutine calls or package in Ada 1191. It al-
lows the same code inherited from parent class with-
out any function (subroutine) calls. It also supprots
the class hierarchy design which captures the is-a re-
lationship between a class and its subclass. The class
hierarchy is usually represented by a directed graph,
called inheritance graph.

An inheritance graph could be divided into three
basic structures: 1. single inheritance, 6. multiple in-
heritance, and 3. repeated inheritance; they are repre-
sented by a connected directed graph G=(V,E), where
V is a set of classes, and E is a set of inheritance edges
which are ordered relations such that E = { z -+ y I y
inherits from x, where x and y E V }. Also, there
are three types of inheritance edges tree edges, for-
ward edges, and backeges: tree edges connect parents
to children in the graph, and forward edges connect
ancestors to decendants. However, back edges which
connect decendants to ancestors should be avoided.
The reason is that using back edge is prone to enter a
cyclic inheritance [13]. Now, we discuss the three ba-
sic structures of inheritance graph and present three
theorems to help develop the OOP software testing.

Defintion 1: A single inheritance is that each class
inherits uniquely from one parent class.

For a single inheritance, it is a tree structure and
no one class inherits from more than one parent class.
For example, if there is a single inheritane, {A -+ B,
A + C , B + D, B + E}, then clasa B and classC
inherit uniquely from root class A, and class D and
class E from class B (see Fig. 3).

Definition 2 If a class is permitted to inherit from
more than one parent class, it is called a multiple
inheritance.

Lemma 1 : Suppose inheritance graph
Gmul = (V, E) contains multiple inheritance, where
Vis a set of classes and E is a set of inheritances
edges. Then, there is at least one vertex v E V
whose in-degree is 2 2.

Proof: For a multiple inheritance graph
G,,,,,! =
relations ips
Cmul, where { z1,z2,...,zn,y } E V. By multiple
inheritance definition, we know that class y inherits
from more than one parent class. It implies that n is
greater than 2. Therefore, in-edges of y 2 2 is hold.

f)(there exist a set of inheritance
z1 -+ y, 22 -+ y, . ' ., z, + y } E

For example, If a class A inherits from two parent
classes, class B and class C (see Fig. 4), then the
in-edges of class A are 2. However, this case would
lead to function name conflictions between the inher-
ited classes. If, for example, both B and C contain a
function print, it is an ambiguity for class A, because
A cannot distinguish it 1201. This function clash is
called name-confliction. The same problem also ex-
ists in repeated inheritance and we will discuss it in
the following.

Figure 4. An example of multiple inheritance.

Given a multiple inheritance Definition 3
Gmul = (V, E), if there exists a common ancestor
class such that the parent classes of Vinherit from
it, the repeated inheritance is defined as Gmul U the
common ancestor U the inhertiances edges between
the parent classes and the common ancestor.

For example, given a multi le inheritance Gmul =
(V , E) , where V = { D,B,GP and E = { B ---* D
, C -+ D }, if there exists a common ancestor class
A from which class B and C inherit (i.e., A -+ B ,
A -+ C), then the repeated inheritance is constructed
by Gmul U {A} U { A -+ B , A -+ C} (see Fig. 5).

Figure 3. An example of single inheritance Figure 5. An example of Repeated Inheritance

380

Lemma 2 : Given a repeated inheritance graph
Grep = (S, F), there must exist a multiple
inheritance gra h G,,l =
of Grep = (S, FP such that

Proof: Let Gmul = (V, E) be a multiple inheritance,
where E = {ZI -t y, z2 -t y, . . ., 2, -+ y} and
V = {y, ?1,22! . .., 5,). By the definition ob
repeated inheritance [191, there must exist a common
ancestor class connected to the parent classes of V. If
z is the common ancestor class, then there must exist
a set of inheritance relationships (edges), { z 4 21,
z + 22, . . ., z -+ 2, } such that z is connected to
parent classes { 21, 22, . . ., zn } E V. It leads to a
repeated inheritance graph Grep = (S, F) such that
Gmu[is a subgraph of Grep, where S = VU {z} and

E) which is a subgraph
F is hold. S and E

F = E U { z -t 21, z --+ 5 2 , '", z -t 5, }.

Theorem 1: Let G = (V,E) be a repeated
inheritance graph, then the vertex numbers of V 2 3
is hold and G contains closed regions.

Proof: By Lemma 1, there must exist at least a
vertex U whose in-degree is 2 2, that is, U inherits
from more than two parent classes. Therefore, the
vertex numbers are 2 3. By Lemma 2, we know that
there is a common ancestor class connected to the
parent classes of U. This will lead to a closed region.
For example, let the in-degree of U be 2 and vertex c
and vertex p are its parent classes. We can choose
either one of the two parent classes to be the
common ancestor vertex. If class c is chosen, c 4 p,
c -+ U and p -t U are hold. It will lead to a closed
region shown as belows:

Lemma 3: If G = (V, E) is an inheritance graph
containing repeated inheritance, then the euler 's
region number of G 2 2 is hold (i.e, G contains at
least one closed region).

Proof: By theorem 1, we have shown that a repeated
inheritance graph must contain closed regions. By
euler's formula [l], if there exists closed regions in a
plannar graph, the euler's region number 2 2 is hold.

When the class numbers of an inheritance graph
grows linearly, the number of repeated inheritances
would increase in an exponential rate. It is difficult
to find the repeated inheritances, much less test those
implicit software errors. Furthermore, the problem
of finding out all the repeated inheritances is a NP-
complete problem which will be discussed in the the
next section. Since it is impratical to exercise all

repeated inheritances in an inheritance graph, tech-
niques to guide the testing units become important.
The idea is that repeated inheritances of an inheri-
tance graph is composed of a set of unit repeated in-
heritances (URIs), and name-confliction errors could
be found and solved easily from them. To formally de-
scribe the testing methodology, a theorem is presented
as below:

Theorem 2: Let G = (V,E) is an inheritance graph.
If it contains repeated inheritances, then the graph G
could be decomposed into a set of unit repeated
inherit anes (URIs).
Proof: The proof proceeds reversed induction on the
euler region number. Let G, = (V,E) be an
inheritance graph whose euler region number is r.
Suppose we remove a common edge, an edge between
any two closed regions, from G,, then its euler region
number will be decreased by one, and two unit
repeated inheritances (unit closed regions) will bel
lost. Let G,-,(V, E') be the remainder graph after
removing a common edge, where its euler region
number is r-1, E'=E - an common edge between two
closed edges and the decreased regions must contain
the removed common edge.

Induction hypothesis:
G,(V, E) = G,-1 (V, E') Union 2 decreased URIs
. (1)

1. The base case is trivial. We observe that for a
graph with r = 2 shown as below, (1) is satisfied.

,... O.."...

2. Assume that the induction hypothesis is true for
abitrary r, and now consi$w r-1. Let us consider
figure 6, where G,-z(V, E) is the remainder graph
after removing a common edge from Gr-l (V, E').
After removing the common edge E, the region
number is reduced by one and the remainder edges
E" = E' - E. There are 2 decreased URIs, region
R1 and region R2. Therefore, Gr-l (V, E')
=Gr-2(V, E'') Union R1 and R2
statisfies the induction hypothesis and the proof is
completed.

Gr-1(V, E')

38 1

Gr-l(V, E ’) Gr-,(V, E”)

Fig. 6 the induction on the Gr- 1 (V, E‘)

4 Algorithm for Finding URIs
In this section, the algorithm for finding unit repeated
inheritances is proposed (see Fig. 7). The data struc-
ture of Inheritance relation structure is represented by
a directed graph G=(V,E), where V is the set of all
classes and E is the set of all inheritance edges. To
illustrate this algorithm, many definitions are needed.

D&i t ion:
1. root class: it is a class node with no in-edges.
2. terminal class: it is a class node with no out-edges.
3. Ancestor(v): it is a set which records all the

ancestor class numbers of v and itself,
where v is a class of V.

Algorithm: Finding Unit Repeated Inheritances
(URW

Input: A directed graph G(V,E)
Output: Unit repeated inheritances

Step 1. Build a directed graph consists of classes and
inheritance edges and initialise that
Ancestor(u) = {U}.

traverses all root classes; in the process
of traverse, parent ancestor set is added
to its children ancestor sets.

if the number of the ancestor set L 2 then

Step 2. Using bread-first traverse algorithm to

Step 3. For all terminal classes do

be gin
Union (se t i , s e t ,) { 2 5 i,j <_ n

if common parent is found then
record the uniton set.
(i.e., An URI is found)

and seti # set , }

else if the number of ancestor set = 1
discard the union set (no URI exists)

end
else

endif
no repeated inheritances exist

Figure 7. Algorithm for finding URIs

In figure 8, the root classes are class 1 and 10; the
terminal classes are class 5, 8, and 9. To get the ances-
tor sets for each class, bread-first traversal algorithm
is utilised to traverse all the classes individually; in the
process of traverse, parent class number is added into
the Ancestor(u) set where U is the child class of parent

Laterly the ancestor sets of class 3, 4, and 5 can be
found by the same way. Similarly, root class 10 can be
traversed to find its ancestor sets after the completion
of the traverse of root class 1. For each terminal class,
union any two sets which has common parent number,
then a repeated inheritance(c1osed region) is found.
If in these sets there is no common parent number,
then there is no repeated inheritance. For example,
consider terminal class 8, there are four ancestor sets

(1,2,6,8), (1,3,8), and (1,2,7,8). When union
and (1,3,8), there exists a common parent

etween them; a union set (1,2,3,6,8) contain-
ing a URI is found. When union (10,6,8) and (1,2,6,8),
there is no common parent; we can derive that there
is no URI. After all the union operations of the sets
of the ancestor set of terminal class 8, there are three
URIs (see Fig.8). There is no URI found in the termi-
nal class 5, because the set number of Ancestor(5) is
less than 2. There is a URI, (1,3,4,9), found in the ter-
minal class 9, since there are two sets of Ancestor(9)
with common parent class 1.

Let us reconsider repeated inheritance graph. If the
sharing ancestor or common parent class is removed,
then multiple inheritance is get. In other words, a
repeated inheritance must contain a multiple inheri-
tance.

Fig. 8 Illustration of URIs Algorithm

After the bread-first traverse, we find that there are
three terminal classes, 8, 9, and 5.

1. Class 5 has only one element in the ancestor(5), so

2. Class 9 has two elements,(l,3,9) and (1,4,9), in the
there is no repeated inheritance.

ancestorfg).
Union((i 3,9),(1,4,9))
= (1,3,4,9\

URIs Hierarchy Testing Methodology
Suppose that G=(V,E is an inheritance graph

which contains repeated in h eritance and its euler’s re-
gion number i s r. By the theorems as we have seen
above, G could be successfully decomposed into a set

3. Class 8 has four elements in the ancestor(8); they of URIs whose region number is 2 to help to detect
name-confliction errors and some certain software er-
rors. However, there may be many hidden errors ex-
isted in those subgraphs of G whose region numbers
are between 3 and r. To address these hidden software
errors, we have to find all the repeated inheritances,
all set of closed regions with different euler’s region
numbers of an inheritance graph. All the repeated in-
heritances could be found by modifying the algorithm
mentioned above. We need only to modify the union
operation to permit it to union three, four, . . ., and
si classes from the terminal classes each time, but it
is a time consuming task. All the cyclic inheritances
could be found as below:

are (10,6,8), (1,3,8), (1,21618) and
(1,217, 8)

(a) Union ((10,6,8), (1,2,6,8)) = d
Union [[10:618/: [1,2,7,8)) = d
Union 10 6 8 1,3,8)) = d

The three union operations get empty set,
because there are no common parents.

(b) Union ((1121618)1 (1,3,8))

t

U Union (9’) (Ancestor(i))u U Union (2) (Ancestor(i))U--*
i=l i=l

U Union

=(1,2,3,6,8) et
Union ((1121618)1 (1,2,7,8)
= (1,2,6,7,8) t

(Ancestor(i))UU Union (t;) (Ancestor(i))
i= l

Fig. 8 (continued) q
The time complexity of this algorithm is O(n3).

Let n be the numbers of total classes, t be the numbers
of terminal classes and 1 5 t 5 n, Ancestor(;) be the
ancestor sets of the ith class, and Si be the number of
the elements in Ancestor(i), for all class i E terminal
classes and 1 5 Si 5 n. For each terminal objects,
we perform the repeated inheritance algorithm to find
all the basic repeated inheritance component (unit
closed region). The time complexity of this algorithm
is

t cc(;) = c (;I) + c (4’) +
i = l

5 c (;) + c (;) + . ‘ ’ + c
= t x n (n + 1)/2

5 n2 (n + 1) /2

o (~ ~)

i = l

The time complexity of finding all the closed regions
is as follows:

C (”) + c (2) + . . . + c (:;)
- < c(;)+C(,”)+-+c(;)
= 2n - c (Y) - c (t)
= z n - n - 1

O(2”)

Although it outlines all the repeated inheritances,
the time complexity is exponetial. To specify these
hidden software errors, we classify all the repeated
inheritances according to their different euler region
numbers respectively. We build a hierarchy testing
prototypes to cover these hidden software errors cor-
responding to repeated inheritances with different eu-
ler’s region numbers. First, we divide all the repeated
inheritances into a set of closed regions denoted as
URIs(n), where 1 5 n 5 r. The hierarchy testing pro-
totypes represented by URI(n) are shown as following:

URIs(1): require every class in a repeated inher-
itance graph needs to be exercised at least once.

URIs(2): require every unit repeated inheritance
with r = 2 needs to be exercised at least once.

0 URIs(3): require every closed region with r = 3
needs to exercised at least once.

383

0 URIs(r): This testing level is equivalent to test
the original inheritance graph.

After finding the hierarchy testing prototypes, we
can apply McCabe’ cyclomatic testing strategy 1171
mentioned in section 2 to help test those hidden er-
rors.

URIs(1) is also called object-testing 161; requires ev-
ery class needs to be tested at least once, clearly, it
is equivalent to testing all classes. It is the basic
unit testing for any inheritance graph. To proceed on
URIs(r) testing for r 2 2, URls(1) should be tested in
advance. URIs(2) requires every closed region r with
r = 2 to be tested at least once. URIs(3) requires
every closed region with r = 3 to be tested at least
once. URIs(r) faces the original inheritance graph. It
is equivalent to testing all inheritance paths of an in-
heritance graph. To identify the correctness of this
hierarchy testing methodology, we should prove that
URIs(2), URIs(3), ... ,and URIs(r) contains the same
unit repeated inheritances.

Theorem &For an inheritance graph, the repeated
inheritances could be found from the terminal classes
by union of 2, 3, ..., and n classes, respectively. For
each union, they will contain the same unit repeated
inheritances .i.e.,

1
1

1

U R I s U Union (2) (Ancestor(i)) r i= 1

(t i=l

r i=l

= URIs U Union (:) (Ancestor(i))

= . . . = URIs U Union (2) (Ancestor(;))

Proof: Suppose G, = (V, E) is an repeated
inheritance graph. By URIs algorithm, we find that

t

G, = U Union (:) (Ancestor(;))
i=l

when the union number is 2,

t

G, = U Union (2) (Ancestor(i))
i=l

when the union number is 3,

t

G, = U Union (:) (Ancestor(;))
i= l

when the union number is n.

By theorem 2, we could derive the fact that

URIs-of -G, = U R I s

is true for all 2 5 z <_ n, the theorem holds.

U Union (2) (Ancestor(;))
(t i= 1

5 Conclusion
A graph-theoretical testing methodology for object-
oriented software is proposed and an algorithm for
finding name-confliction errors is presented. This
testing methodology could detect object-oriented soft-
ware errors efficiently and reduce the object-oriented
software development costs to enhance software qual-
ity. Furthermore, the proposed algorithm could be im-
plemented to become an useful tool in object-oriented
design phase to detect improper inheritance struc-
tures.

f i r ther studies based upon this research are :
1. developing a new object-oriented software metric
based on the algorithm to measure the object-oriented
software complexity. 2. integrating object-testing to
invent a new testing tool to help to develop object-
oriented software development environment.

References
[I] Berge, C., Graph and hypergraphs, North-

Holland, Amsterdam, The Netherlands, 1973.

[2] Grady Booch, “Object-Oriented Development,”
ZEEE Ifans. Software Eng., v01.2 no.2 ,Feb. 1986.

[3] Chung, C.M., A Software Metrics Based Testing
Enuiroment,Ph.D. Dissertation, The advanced
Center for Computer Studies, Univ, of South-
wester Louisisana, Lafayette, Louisiana, 1988.

141 Chung, C.M. and Yang, M.G., “Software
mamtability,” Proceedings of Science, Technolo-
gies, and Engineering, Houston, pp. v412 May
1988.

[5] Chung, C.M, Edwards, W.R., and Yang, M.G.,
” A Software Metrics Based Software Environ-
ment,” Proceedings of International Computer
Symposium, Dec, 1988, vol.1 pp. 696703. R.O.C.

[6] Chung, C.M, “Object-oriented Concurrent Pro-
gramming from Testing View,” Proceedings of
National Computer Symposium 1989. pp 555-565,
R.O.C.

171 Chung, C.M, Yang, M.G., “Testing-Specific Met-
Tics,” Proceedings of Science, Technologies, and
Engineering, Houston, pp. T3-15, May 1989.

181 Chung, C.M., “Softwme Development Techniques
-Combining Testing and Metrics,” IEEE Re-
gion 10 Conference on Communication Systems
, Spet, 1990, Hong Kong.

384

[g] Chung, C.M., “ A Family of Testing Path Selec-
tion Criteria” , Aug. 1991, International Journal
on Mini and Micro Computers.

[lo] Coad, P. and Yourdon, E. Object-oriented Anal-
ysis. Yourdon Press, 1990.

[ll] Cox, B. Object-Oriented Programming: An Evo-
lutionary Approach. Addison-Wesley, New York,
1986.

[121 Gannon, J. “Data Abstraction Implementation
Specification, and Testing,” ACM Trans on Pro-
gramming Language System, vo1.3, July, 1981, pp

[13] Ellis Horowize and Rajiv Gupta, Object-Oriented
Database with Applications to Case, Networks,
and VLSZ CAD, Prenteice Hall 1991.

[141 M. Jackson, System Development. Englewood
Cliffs, NJ:Prentice Hall, 1983.

(151 Laski J. W. and Korel Bogdan, ”A data %ow ori-
ented program testing strategy,” ZEEE llans. on
software eng., Vol. 9, No: 3, May 1983.

T.J. “A Complexity Measurement,” ZEEE Trans-
action on Software Engineering, SE-2 (4), 1976,

A Test-
ing Methodology Using the McCabe Complex-
ity Metric,” NBS Special Publication, Contract
NB82NAAK5518, U.S. Department of Com-
merce, National Bureau of Standards, 1982.

[181 McCabe, Thomas. J. “Design Complexity Mea-
surement and Testing,” CACM volume 32 Dec

211-223.

[16] McCabe,

pp 308-302.

[17] McCabe, T. J., “Structured Testing:

12, 1989, 1415-1425.

[19] Betrand Meyer, Object-Oriented Software Con-

[20] Betrand Meyer, “Eiffel: A Language and Envi-
ronment for Software Engineering,” The Journal
of Systems and Software 1988.

(211 Ntafos, S.C., “On Required Element Test-
ing,”ZEEE Trans. on Softwar ENg,. v01, SE-10,
no.6, pp 795-803, Nov,1984.

[22] Geoffrey A. Pascoe “Elements of Object-Oriented
Programming,” BYTE August,l986, pages 139-
144.

[23] Lewis J. Pinson. Richard S. Wiener, An In-
troduction to Object-oriented Prgramming and
Smalltalk, Addison-Wesley pp 49-60, 1988.

[24] Rapps S. and Weyuker E. J., “Selection software
test data using data %ow information,” IEEE
Trans. on SE, vol. SE-11, No. 4, April 1985, pp.

struction, Prentice Hall 1988.

367-375.

1251 Seidewitr, E. General object-oriented software de-
velopment: background and ezperience, J. Syst.
and Software. 19, (1989), 95-108.

1261 Seidewitz, E. and Stark, M.“ Towards a general
object-oriented software development methodol-
ogy.” Ada Letters, 7 (July/August 1987) pp 54-
67.

1271 Ward, P. How to integrate object orienta-
tion with structured analysis and design. ZEEE
Softw.March, 1989), 74-82.

[28] Woodward, M.R, Hennel, M.A, and Hedley, D.,
“ A Measure of Control Flow Complexity in Pro-
gram Text,” ZEEE Trans. on Software Eng., voL
SE-5, no.1 pp45-50,1979.

385

